منابع مشابه
A novel mass spectrometric assay for the cerebroside sulfate activator protein (saposin B) and arylsulfatase A.
A mass spectrometric method is described for monitoring cerebrosides in the presence of excess concentrations of alkali metal salts. This method has been adapted for use in the assay of arylsulfatase A (ASA) and the cerebroside sulfate activator protein (CSAct or saposin B). Detection of the neutral glycosphingolipid cerebroside product was achieved via enhancement of ionization efficiency in t...
متن کاملEffect of saposins on acid sphingomyelinase.
The effect of saposins (A, B, C and D) on acid sphingomyelinase activity was determined using a crude human kidney sphingomyelinase preparation and a purified sphingomyelinase preparation from human placenta. Saposin D stimulated the activity of the crude enzyme by increasing its apparent Km and Vmax. values for sphingomyelin hydrolysis. Unlike the crude enzyme, the activity of the purified enz...
متن کاملDistribution of saposin proteins (sphingolipid activator proteins) in lysosomal storage and other diseases.
Saposins (A, B, C, and D) are small glycoproteins required for the hydrolysis of sphingolipids by specific lysosomal hydrolases. Concentrations of these saposins in brain, liver, and spleen from normal humans as well as patients with lysosomal storage disease were determined. A quantitative HPLC method was used for saposin A, C, and D and a stimulation assay was used for saposin B. In normal ti...
متن کاملSphingomyelinase D/Ceramide 1-Phosphate in Cell Survival and Inflammation
Sphingolipids are major constituents of biological membranes of eukaryotic cells. Many studies have shown that sphingomyelin (SM) is a major phospholipid in cell bilayers and is mainly localized to the plasma membrane of cells, where it serves both as a building block for cell architecture and as a precursor of bioactive sphingolipids. In particular, upregulation of (C-type) sphingomyelinases w...
متن کاملTissue-specific effects of saposin A and saposin B on glycosphingolipid degradation in mutant mice.
Individual saposin A (A-/-) and saposin B (B-/-)-deficient mice show unique phenotypes caused by insufficient degradation of myelin-related glycosphingolipids (GSLs): galactosylceramide and galactosylsphingosine and sulfatide, respectively. To gain insight into the interrelated functions of saposins A and B, combined saposin AB-deficient mice (AB-/-) were created by knock-in point mutations int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biochemical and Biophysical Research Communications
سال: 1988
ISSN: 0006-291X
DOI: 10.1016/s0006-291x(88)80855-6